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Abstract— The paper proposes the use of a complexity
reduction procedure based on nonlinear system identification
techniques on a kinetic Monte Carlo simulation model of thin
film deposition. This procedure combines frequency domain
identification with nonlinear structure selection techniques
and generalized basis function parameterization of a Volterra
structure. It is used successfully to model the roughness
response to time-varying temperature inputs during the de-
position of germanium on a cubic Ge(001) lattice, reducing
the original model by three orders of magnitude.

I. INTRODUCTION

Thin film deposition refers to the evolution of thin
layers—sometimes only a few molecules thick—on com-
paratively large surfaces. Modeling such processes may
require a description on the molecular level to simulate the
relevant phenomena accurately [1]. Consequently, thin film
deposition models are complex and have demanding CPU
time requirements for simulation. This, however, makes
those models inadequate for many purposes like advanced
controller design. Therefore, methods are desirable that
provide accurate models with reduced complexity both in
model size and in computation time requirements.

A popular method for simulating thin film deposition is
kinetic Monte Carlo (KMC) models [2], [3], [4]. A severe
drawback of those models is their high complexity. With the
advent and advances in computational materials science, the
systems community has recently begun to study molecular
simulations for the purpose of engineering processes [5].
Vlachos and co-workers used coarse-graining in a Monte
Carlo simulation for surface adsorption, and analyzed the
tradeoff between error and the reduction in computation [6].
Lou and Christofides designed an estimation and control
strategy for a Monte Carlo simulation of film deposition,
using smaller simulation sizes, enabling on-line implemen-
tation [7]. A modeling method for Monte Carlo film growth
simulations was proposed by Gallivan and Murray [8],
in which the detailed simulations are used to construct
Markov models, with discrete states describing groups of
similar configurations. Gear and Kevrekidis have proposed
an approach for equation-free computing [9], in which

systems tasks are applied directly to large simulations,
without developing an explicit reduced order model [10].

However, due to the methods used by those approaches,
which were tailored specifically for the underlying KMC
equations, the resulting reduced models are not suited for
all kinds of inputs. Especially the approximation qualities
for highly dynamic inputs are questionable. The approach
taken here, on the other hand, tries to provide a unified,
problem-independent framework for complexity reduction.
It regards the KMC model as an input-output process and
obtains a reduced nonlinear I/O-model by applying a com-
bination of several linear and nonlinear system identification
techniques to the “process”. This approach was adapted
from the procedure presented in [11]. It is iterative and
combines the following methods: identification of “best”
linear models in the presence of nonlinearities [12], system
representation by Volterra models parameterized with gen-
eralized orthonormal basis functions [13], and orthogonal
least squares methods for regressor selection [14]. The aim
in [11] was to present a novel nonlinear model reduction
technique, proving its usefulness on a small toy problem
from chemical engineering. Here, on the other hand, the
focus lies on applying this technique to a specific complex
and relevant problem, which requires certain adaptations of
the procedure. This application study also highlights the
advantages and limitations of the method presented in [11]
in the context of thin film deposition models.

The paper is structured as follows. The next section
provides background on thin film deposition and the models
used to simulate this process. Sect. III introduces the meth-
ods used for complexity reduction. Sect. IV presents the
reduced models found with our approach and discusses how
these models can be used for offline optimization. Also, the
specific challenges of reducing thin film deposition models
are addressed. Finally, Sect. V concludes the paper.

II. THIN FILM DEPOSITION

Thin film deposition is a manufacturing process in which
precursor material of single atoms or molecules attaches
to surfaces, forming films with a thickness between a few
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atoms and several micrometers. It is used to manufacture
small devices like integrated circuits or MEMS [15]. Other
applications include the coating of surfaces in order to give
them desired properties.

To model the evolution of thin films, molecules are
assumed to have discrete positions within a lattice rep-
resenting the underlying crystal structure. The state of
the film is then completely defined by the occupancy of
each lattice site. The lattice configuration evolves in an
interplay of adsorption, diffusion, and desorption of single
molecules, which depends on environmental conditions like
temperature or influx of the precursor gas.

If the relevant molecular dynamics are known, we can
calculate the transition rates between different lattice config-
urations and describe the film evolution with a probabilistic
master equation [4]:

d

dt
PH(t) =

∑
H′

kH′→HPH′ (t) −
∑
H′

kH→H′
PH(t) (1)

〈Y 〉(t) =
∑
H

PH(t)Y (H) (2)

PH is the probability of the lattice being in configuration H ,
which changes over time depending on the transition rates k
to and from all other configurations. The expected material
properties 〈Y 〉 are the material properties Y (H) for each
configuration H weighted by the respective probabilities.
Since the external inputs influence the transition rates, this
is a bilinear-like control system where a function of the
input enters the state equation multiplicatively.

Assembling all probabilities in one vector and separating
the transitions between configurations according to the m
different underlying transition mechanisms yields

ẋ =

m∑
i=1

ki(u)Nix (3)

y = Cx (4)

with the probability vector x = {PH1 , . . . , PHn} ∈ R
n and

a vector of expected film properties y ∈ Rp. The ki are
input dependent transition rates for different mechanisms
determining surface evolution, like adsorption, diffusion,
and desorption. The coefficients of the corresponding ma-
trices Ni have a value of 1 if a transition from one
specific configuration to another is possible through the i th

mechanism, and 0 otherwise. C is obtained directly from
the Y (H) in (2).

To describe a lattice of q atoms, the number of lat-
tice configurations and thus the dimension of the master
equation is n = 2q, which is usually too large to be
implemented for simulation. A solution to this problem is
to use kinetic Monte Carlo (KMC) simulations [4]. These
do not simulate all possible configuration probabilities in
parallel, but rather generate explicit, stochastic realizations
of the master equation (3, 4).

The particular model underlying this paper is taken from
[16] and considers the deposition of germanium through a

molecular beam epitaxy process on a cubic Ge(001) lattice,
in which each site has six neighbor sites. The lattice spreads
over 100 × 100 atoms horizontally, while the number of
vertical layers is unlimited in the model. To make up for
the rather small lattice area, periodic boundary conditions
are used. No desorption of atoms is being modeled, and the
precursor influx is kept constant at a level that corresponds
to a film growth rate of one layer per second.

As input to the model the surface temperature is consid-
ered,

u = T, (5)

which influences the diffusion rate nonlinearly via

kj+1(u) = ν exp

(
−Edif,0 + j∆E

kbu

)
, (6)

with j = 0, . . . , 4 the number of horizontal lattice neigh-
bors, ν = 7.8× 1012 s−1 the atomic vibrational frequency,
kb = 8.616 × 10−5 eV

K the Boltzmann constant, ∆E =
0.2 eV the bond strength, and Edif,0 = 0.7 eV the activation
energy of surface diffusion. As output we consider the
roughness of the evolving surface, defined as the variation
in height across the lattice. For a lattice of N × N atoms
(in our case: N = 100) it can be calculated as

y =
1

N

√√√√ N∑
i=1

N∑
j=1

(hi,j − h̄)2 (7)

with hi,j representing the height at position (i, j) and h̄
the average lattice height. The dimension of roughness is
monolayers of atoms.

Although thin film deposition is a non-equilibrium batch
process, we are only interested in a model for very particular
initial conditions, namely a flat surface. Therefore we do not
need to consider the influence of varying initial conditions
here. The interesting phase of a deposition process is the
evolution of the first few (≈ 20) layers. During this time
the system shows transient behavior once the process is
started (see Fig. 2 below). Since we want to model the
dynamic behavior of this initial time interval, we have to
deal with a process that is not considered around a steady
state operating point.

III. PROCEDURE FOR COMPLEXITY REDUCTION

Our approach to complexity reduction is based on a
procedure presented in [11]. This procedure regards the
complex model as an input-output process and uses system
identification techniques to find a reduced model. Thus it
also allows the consideration of very complex processes like
thin film deposition, which would not be accessible to most
classical model reduction techniques. Unlike identification
of physical systems, “identifying” a simulation model has
the advantage that arbitrary and unlimited experiments can
be carried out, making it possible to find optimal inputs
which maximize the information gained from those exper-
iments.
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Let S represent the complex model for which a reduced
model M is sought such that

ŷ(t) = M[u(t)] ≈ S[u(t)] = y(t). (8)

This paper only considers that M is discrete and, without
loss of generality, t ∈ N is taken as normalized discrete
time, i.e. t = τ/Ts, where Ts is the sampling period and τ
is physical time.

The main assumption made on S is that it can be
sufficiently well approximated by a Volterra series [17].
This is true for many process control systems [18]. The
structure we use to model S is the finite discrete Volterra
series [19] which for a nonlinear degree of n is given by

ŷ(t) = ŷ0 +
n∑

j=1

vj
m(t), (9)

with vj
m(t) = vj

m (u(t − 1), . . . , u(t − m)) the j-th order
terms with memory length m, i.e.

vj
m(t) =

m∑
i1=0

· · ·
m∑

ij=0

αj(i1, . . . , ij)

j∏
k=1

u(t − ik). (10)

The coefficients αj(i1, . . . , ij) are called the j-th order
kernels.

It is a well known fact that for example fading memory
systems [20] may be approximated uniformly on bounded
input sets by a finite Volterra system with n and m
sufficiently large.

Graphically a Volterra model has the structure shown
in Fig. 1 with the filters Li(z) being replaced by simple
delay filters (L1(z) = z−1, L2(z) = z−1, . . . ). In order
to represent systems with slow dynamics, a Volterra model
requires a large number m of delay filters. For this reason,
general Volterra models are impractical for identification of
dynamic systems.

P (·)
...

u y

L1(z)

L2(z)

Lq(z)

Fig. 1. Block structure for the representation of generalized Volterra
models. The input first passes a bank of linear filters Li(z) and is then
mapped to the output by a MISO static polynomial function P (·).

Therefore, a re-parametrization that reduces the number
of required terms is necessary to make Volterra models
useful for system identification. This is done here by
expanding the Volterra kernels α in terms of linear filters

which represent the dynamics of S better than mere delays,
thus reducing the number of necessary filters. The approach
taken here uses generalized orthonormal basis functions
(GOBFs) [21] given by

Bk(z) =

√
1 − |ξk|2
z − ξk

k−1∏
i=1

1 − ξiz

z − ξi
. (11)

with the discrete poles ξk.
These basis functions generalize the Laguerre basis (ξk =

β for all k), the Kautz basis (ξk = γ exp(jφ) for k =
1, 3, . . .) and the finite impulse response basis (ξk = 0).

If the Volterra kernels αj(i1, . . . , ij) vary regularly as
functions of their arguments, then they can be expanded
(for m = ∞) as

αj(i1, . . . , ij) =

∞∑
r1=1

· · ·
∞∑

rj=rj−1

γj(r1, . . . , rj)

j∏
k=1

brk
(ik).

(12)
where γj(·) are kernels (i.e. parameters) and bi(t) is the
inverse z-transform of Bi(z), i.e.

bi(t) = Z−1 {Bi(z)} . (13)

Substituting (12) in (10), truncating the infinite sums, and
regrouping leads to the compact representation of a GOBF
Volterra model

ŷ(t) = ŷ0 +

n∑
j=1

q∑
r1=1

· · ·
q∑

rj=rj−1

γj(r1, . . . , rj)

j∏
k=1

ψrk
(t),

(14)
where

ψrk
(t) =

∞∑
i=0

brk
(i)u(t − i). (15)

If GOBF poles are chosen that match the dynamics
of S, we can expect to need only q � m GOBFs to
approximate the system with an accuracy comparable to
that of a Volterra model with m delay filters. Moreover,
this approach implicitly realizes an infinite memory length
(cf. (15)) without requiring infinitely many parameters.
Once the GOBFs have been defined, estimation of the
parameters γ in (14) simplifies to a linear optimization
problem.

In [11] it is suggested to determine the GOBF poles
by identifying a best linear approximation of S for the
frequency range of interest. For this the system is excited
with random multisines, i.e. periodic signals with fixed
amplitude spectrum, but random phase spectrum. Then the
measured frequency response function (FRF) Y (k)/U(k) is
calculated, where Y (k) and U(k) are the measured output
and input spectra and k is an index for excited frequency
lines. It can be shown [12] that for the input class of random
multisines the average over several FRFs represents the
best linear approximation for S. A state space realization
(Â, B̂, Ĉ, D̂) is then found for the measured FRF using
a subspace algorithm in the frequency domain [22]. The
eigenvalues of Â—neglecting multiplicities—are grouped
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in a candidate pole set Z = {ζ1, . . . , ζr} from which the
GOBF poles will be chosen. Since the FRF is calculated
over a discrete and limited frequency spectrum, it can never
have a pole ζ = 0, which corresponds to an infinitely high
frequency and represents a direct feedthrough of the input
without delay. It turns out, however, that such a feedthrough,
not necessarily directly to the model output, but at least to
the filter outputs ψrk

(t) (cf. (14)), improves the quality of
the resulting models. Therefore this pole is added to the set
of candidate poles, Z := Z ∪ {0}.

Although (14) is linear in the parameters once the GOBFs
have been picked, it is clear that even for a relatively small
q, the number P of parameters can become quite large,
namely P =

(
n+q

q

)
, so a model structure optimization is

desirable. This is achieved by several means: First, the poles
ζi are not all used immediately, but at each round only the
pole that improves the model performance most is added
to the set of used GOBFs. In order to have only relevant
regressors in the final model, an orthogonal least squares
algorithm [23] is used for forward selection combined
with a statistical backward selection that cross-checks the
significance of regressors across several data sets. Through
this combination of methods the procedure manages to find
a reduced model with an optimally parsimonious structure.
Furthermore, this model reduction procedure is iterative,
allowing to improve the model from round to round.

As mentioned before, thin film deposition is a batch
process whose dynamic behavior does not evolve around a
steady state operating point. The Volterra structure in (14),
however, can only represent input-output models around
an operating point (u0, ŷ0). To enable the procedure in
[11] to model batch processes, it is adapted here to have
a time-varying “operating point” y0(t), which represents
the transient response to a nominal constant input u0

(cf. Fig. 2):

ŷ(t) = ŷ0(t) +

+
n∑

j=1

q∑
r1=1

q∑
r2=r1

· · ·
q∑

rj=rj−1

γj(r1, . . . , rj)

j∏
k=1

ψrk
(t)

(16)

with
ŷ0(t) = S[u0]. (17)

ŷ0(t) was obtained from averaging 30 realizations of the
original KMC model. With this adaptation the proposed
procedure is able to find reduced models for batch processes
without a fixed operating point.

IV. RESULTS & DISCUSSION

The range of behaviors shown by the deposition model
can be seen in Fig. 2. For the investigated input range of
390 ± 70 K, typical roughness outputs vary between the
dashed and the dot-dashed lines in the figure. The solid
line represents the model output for a constant input of
390 K. The prominent oscillations in the 390 K and 450 K
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Fig. 2. Averaged outputs of the thin film deposition model for constant
inputs of 330, 390, and 450 K. The 30 dashed gray trajectories represent
single, non-averaged outputs for an input of 390 K. The variation in the
single outputs results from the stochastic nature of the simulation model.
Roughness is given in monolayers [ML].

trajectories are directly linked to the nature of the deposition
process, each period corresponding to the deposition of
a new layer of atoms. In the 330 K case, the relatively
low temperature inhibits surface diffusion of the atoms and
thus smoothing of the surface, causing the roughness to
rise monotonically without oscillations. Also, the model
behavior is stochastic due to its implementation as a Monte
Carlo model. This is represented exemplarily for a constant
input of 390 K by the gray dotted lines in Fig. 2. At
this temperature, the roughness output has a relative bias-
corrected standard deviation of 2.35%.

Previous tests of the complexity reduction procedure on
other, even more noisy processes suggest that its perfor-
mance is very noise-resistant. Although this was not an
important intention when the procedure was developed in
[11], it is a pleasant side product of the voting scheme
across data sets used to select significant regressors.

In spite of this noise resilience, the data obtained from
the detailed KMC simulation is averaged before using it
for model reduction. This is partly done to reduce the
computational demand during the model building step. Al-
though the presented procedure only scales approximately
linearly with the amount of used data, its high computer
memory demands restrict the number of data sets that can
be considered using conventional computers. Here, 20 KMC
realizations for the same input were averaged to come up
with a single data set for reduced model building.

Altogether, 15 data sets are used in the different steps
of the model reduction procedure (not counting validation),
corresponding to the data from 300 different KMC simu-
lations being used to build a reduced model. These num-
bers highlight the advantage of the presented method over
classical system identification on real physical processes,

2569



where this amount of data (with arbitrary input trajectories
chosen by the user) would usually not be available. For
identification of the GOBF poles the input data consists of
random multisines. For the subsequent regressor selection
step mixtures of random multisines and random steps are
used, since these are control relevant signals. Validation is
carried out on mixtures of multisines and random steps that
have not been previously used during the model reduction
process.

Applying the procedure described in Sect. III with this
kind of simulation data to the deposition model consistently
produces reduced complexity models with good approxi-
mation qualities. One such model has the following cubic
structure:

y(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(t)
ψ2(t)
ψ3(t)
ψ2

1(t)
ψ2

2(t)
ψ2

3(t)
ψ2

4(t)
ψ2

5(t)
ψ1(t)ψ2(t)ψ6(t)

ψ2
2(t)ψ6(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

· θ, θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.880× 10−4

−1.912× 10−4

−9.158× 10−5

3.913 × 10−7

7.824 × 10−7

2.780 × 10−7

3.142 × 10−6

3.220 × 10−6

2.281 × 10−8

−4.210× 10−8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

with ψi(t) the output of the ith GOBF filter. The GOBFs
have the poles[

ξ1 ξ2 ξ3 ξ4,5 ξ6

]
=

[
0.93 0 0.99 0.66 ± 0.74i 0

]
(19)

(the procedure can select the same pole several times). The
poles define the GOBFs through (11), and the corresponding
filter outputs are then calculated with (13) and (15). Com-
pared to the original KMC simulation, the complexity of this
model is reduced by more than 3 orders of magnitude. The
CPU time requirements for simulation have even decreased
by 4 orders of magnitude, although the reduced model is
implemented in Matlab, while the original KMC model is a
compiled C program. This allows for the utilization of this
model for purposes of advanced control or optimization.

As can be seen in Figs. 3 and 4, the model has good
approximation capabilities even for highly dynamic inputs.
The relative model error is 2.17% on average. This is
especially small if we take into account the stochastic nature
of the KMC data used for model reduction. The approxi-
mation quality is equally good for Gaussian noise inputs
as for randomly changing, but stepwise constant inputs.
This is an improvement over previous reduction approaches
(for example [8]), which only considered stepwise constant
inputs.

To prove the usefulness of the reduced models obtained
with our procedure, they were used as a basis for offline
input optimization for the original deposition model. The
goal was to produce a maximally smooth surface. This is
difficult to achieve through closed loop control on the real
process, since surface properties are hard to measure online.
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Fig. 3. Performance of the reduced model on validation data not
previously used for identification. Top: model error. Middle: outputs of
complex simulation model (solid) and reduced complexity model (dashed).
Bottom: Input consisting of random multisines and random steps.
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Fig. 4. Magnification of the outputs of reduced model and original KMC
simulation model shown in Fig. 3.

Also the available KMC simulation models are usually
too complex to perform an open-loop input optimization
on them. Here, an optimization algorithm from Matlab
enhanced by a simple global search was used to optimize
the last 10% =̂ 2.5 s of the input trajectory with the goal of
minimizing the final surface roughness. This optimization
was carried out on a reduced complexity model found
with the presented procedure. The input was restricted to a
range of ±50 K around the nominal temperature of 390 K.
The final surface roughness resulting from this optimization
(Fig. 5) is decreased significantly compared to the surface
produced by a constant input at the nominal temperature. It
is interesting to see how well the reduced model predicts the
behavior of the original KMC model even for the extreme
inputs of the optimized trajectory. This demonstrates that
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the models obtained with the presented reduction procedure
are indeed useful for input optimization of the underlying
complex process.
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Fig. 5. Input optimization. Bottom: Input optimized over the last 2.5 s
for minimal final roughness on the basis of a reduced Volterra model.
Top: Resulting roughness trajectories for both the reduced Volterra and
the original KMC model. For comparison, nominal trajectories for constant
inputs of 450 K and 500 K are shown.

V. CONCLUSIONS

While KMC models can simulate thin film deposition
very realistically, they are too complex to be used for
control or process optimization. The presented nonlinear
model reduction procedure allows to find compact models
with a complexity reduced by more than three orders of
magnitude. For the thin film deposition process the reduced
models approximate the original process with an error of
only ≈ 2%. The obtained models can deal with highly
dynamic inputs, and thanks to their low complexity and
low time requirements they are suited for tasks like input
optimization. This nicely demonstrates the power of the
model reduction technique. Further work is under way to
incorporate non-zero initial conditions of the process into
the procedure to model systems with transient behavior.
We are also working on maximizing the information gained
in every procedure iteration by optimizing the experiments
performed on the complex model.
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